Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Contam Hydrol ; 264: 104345, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38657472

RESUMO

Tire wear particles (TWPs) are significant contributors to microplastic pollution in the environment, yet there is limited scientific information concerning their impact on soil hydraulic properties. This study aimed to investigate the impact of TWPs at different concentrations (1, 4, 8, and 16% of the air-dried mass of packed soil samples, w/w) on the water retention curves (WRC) of southern California soils with five different textures (clay, clay loam, silt loam, sandy loam, and loamy sand). The concentrations of 8% and 16% were selected to represent extreme pollution scenarios that might occur near highway corridors. High-resolution water retention data, spanning from saturation to oven dryness, were generated using HYPROP™ and WP4C dew point meter instruments. We also developed WRC scaling equations based on the quantity of TWPs. The bulk density of the samples decreased as the TWP concentration in soils increased. The inclusion of very high concentrations of TWPs (8% and 16% w/w) led to a significant reduction in soil moisture content in the intermediate and dry ranges across various soil textures. However, at the same moisture range, adding 1% TWPs had a minimal impact on soil moisture reduction, while the influence of the 4% TWPs concentration treatment was noticeable only in loamy sand and partially in clay loam soils. Additionally, the overall plant available water decreased with increasing TWP concentrations, except for the clay soil. The texture-specific scaling models exhibited promising performance, with RMSE values ranging from 0.0061 to 0.0120 cm3 cm-3. When bulk density was included as an additional input predictor to construct a single scaling model for all textures, the RMSE increased. Nevertheless, it still indicated a good fit ranging from 0.007 to 0.024 cm3 cm-3, highlighting the suitability of simple scaling for identifying WRC in TWPs-polluted soils, particularly for practical purposes. The findings of this study can contribute to a better understanding and quantification of the impact of TWPs on soil hydrology.

2.
Sci Rep ; 14(1): 9337, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653762

RESUMO

Soil water-holding capacity decreases due to long-term mineral fertilizer application. The objective of this study was to determine how replacing mineral fertilizer with maize straw affected the soil water retention curve, soil water content, soil water availability, and soil equivalent pore size. Replacement treatments in which 25% (S25), 50% (S50), 75% (S75), and 100% (S100) of 225 kg ha-1 nitrogen from mineral fertilizer (CK) was replaced with equivalent nitrogen from maize straw were conducted for five years in the Loess Plateau of China. The Gardner model was used to fit the soil water retention curve and calculate the soil water constant and equivalent pore size distribution. The results indicated that the Gardner model fitted well. Replacing nitrogen from mineral fertilizer with nitrogen from straw increased soil specific water capacity, soil readily available water, soil delayed available water, soil available water, soil capillary porosity, and soil available water porosity over time. S25 increased field capacity and wilting point from the fourth fertilization year. S50 enhanced soil readily available water, soil delayed available water, soil available water, and soil available water porosity from the fifth fertilization year, whereas S25 and S75 increased these from the third fertilization year or earlier. Soil specific water capacity, soil readily available water, soil delayed available water, soil available water, soil capillary porosity, and soil available water porosity could better reflect soil water-holding capacity and soil water supply capacity compared with field capacity and wilting point.

3.
Sci Total Environ ; 921: 171258, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417523

RESUMO

Spatially explicit, quantitative information on soil hydraulic properties is required in various modelling schemes. At European scale, EU-SoilHydroGrids proved its applicability in a number of studies, in ecological predictions, geological and hydrological hazard assessment, agri-environmental models, among others. Inspired by its continental antecedent, an analogous, but larger scale, national, 3D soil hydraulic database was elaborated for the territory of Hungary (HU-SoilHydroGrids) supported by various improvements (i-iv) in the computation process. Pedotransfer functions (PTFs) were built in the form of i) advanced machine learning methods and ensemble models, and trained on the ii) national soil hydrophysical dataset. The set of predictors used in PTFs was supplemented by iii) additional environmental auxiliary variables. Spatial layers of the soil hydraulic parameters were generated using iv) 100 m resolution information on primary soil properties, namely DOSoReMI.hu. HU-SoilHydroGrids provides information on the most frequently required soil hydraulic properties (water content at saturation, field capacity and wilting point, saturated hydraulic conductivity and van Genuchten parameters for the description of the moisture retention curve) with national coverage at 100 m spatial resolution down to 2 m depth for six GSM standard depth layers. The HU-SoilHydroGrids has significantly lower squared error in the case of describing the moisture retention curve and hydraulic conductivity than the EU-SoilHydroGrids. The derived 3D soil hydraulic database (ver1.0) is presently available in National Laboratory for Water Science and Water Safety for project partners in order to test its functional performance in describing hydrological and ecological processes.

4.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960525

RESUMO

Soil moisture plays a crucial role in various hydrological processes and energy partitioning of the global surface. The Soil Moisture Active Passive-Sentinel (SMAP-Sentinel) remote-sensing technology has demonstrated great potential for monitoring soil moisture with a maximum spatial resolution of 1 km. This capability can be applied to improve the weather forecast accuracy, enhance water management for agriculture, and managing climate-related disasters. Despite the techniques being increasingly used worldwide, their accuracy still requires field validation in specific regions like Thailand. In this paper, we report on the extensive in situ monitoring of soil moisture (from surface up to 1 m depth) at 10 stations across Thailand, spanning the years 2021 to 2023. The aim was to validate the SMAP surface-soil moisture (SSM) Level 2 product over a period of two years. Using a one-month averaging approach, the study revealed linear relationships between the two measurement types, with the coefficient of determination (R-squared) varying from 0.13 to 0.58. Notably, areas with more uniform land use and topography such as croplands tended to have a better coefficient of determination. We also conducted detailed soil core characterization, including soil-water retention curves, permeability, porosity, and other physical properties. The basic soil properties were used for estimating the correlation constants between SMAP and in situ soil moistures using multiple linear regression. The results produced R-squared values between 0.933 and 0.847. An upscaling approach to SMAP was proposed that showed promising results when a 3-month average of all measurements in cropland was used together. The finding also suggests that the SMAP-Sentinel remote-sensing technology exhibits significant potential for soil-moisture monitoring in certain applications. Further validation efforts and research, particularly in terms of root-zone depths and area-based assessments, especially in the agricultural sector, can greatly improve the technology's effectiveness and usefulness in the region.

5.
Int J Biol Macromol ; 253(Pt 5): 127229, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802458

RESUMO

The main challenge facing agriculture today is water scarcity. At present, agriculture consumes around 70 % of the planet's freshwater, much of which is lost through evaporation, leaching and runoff. This wastage, combined with the increased frequency and severity of droughts linked to climate change, is having a considerable negative impact on crops. As a result, the food security of people living in regions with limited water resources is threatened. In this regard, efficient water management using water-saving materials and soil additives such as superabsorbent polymers (SAPs) are recognized as an effective strategy to boost water use efficiency by plants and improve agricultural productivity. The present study fits with this strategy and aims to investigate the effect of new sodium alginate-based hydrogel-treated sandy loam soil on seed emergence and growth of tomatoes as a crop model under different water-deficit stress levels. A set of pot experiments was conducted in a greenhouse chamber using sandy loam soil amended with two levels of hydrogel (0.1 % and 0.5 % by weight) along with untreated control, all under water-deficit stress at three levels: 30 % of the daily amount of required irrigation water (DARW) for different growing cycles (severe stress), 70 % DARW (mild stress), and 100 % DARW (normal irrigation conditions). The germination test showed the absence of phytotoxicity of the developed hydrogel and confirmed its suitability in protecting seedlings from drought stress. Greenhouse experiment results demonstrated that water stress and levels of applied hydrogel significantly (P < 0.05) affected plant growth parameters such as plant height, stem diameter, number of leaves, chlorophyll content, fresh weight, and dry weight compared with the treatments without SAPs. The developed sodium alginate-based SAPs showed relevant agronomical benefits under drought stress by retaining more water and nutrients, thus it had the potential to be used in agriculture for better water management along with significant environmental benefits.


Assuntos
Solanum lycopersicum , Humanos , Hidrogéis/farmacologia , Alginatos/farmacologia , Agricultura , Solo , Secas
6.
J Environ Manage ; 345: 118874, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659360

RESUMO

Flue gas desulfurization steel slag (DS), a solid waste produced by coal power plants and steelworks, was proposed as an amendment for the remediation of saline-sodic soil. A pot experiment including three dosages of DS alone (1%, 5%, 10% w/w) and their combination with fulvic acid (FA, 1%, w/w) was conducted to evaluate the potentials of DS as an amendment and to explore remediation mechanism of DS combined with FA on saline-sodic soil. The soil salinity, nutrition, pore structure, water retention, consistency, and desiccation cracking of DS and FA-amended soils were determined. Application of DS resulted in a significant reduction of pH, sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) of saline-sodic soil. The DS amendment significantly increased the 6-15 µm pore volume of soil. The combination application of DS and FA showed better effect than the DS alone. The DS amendments at 5% and 10% significantly increased the field water capacity, permanent wilting point, and available water content of the soil, whereas significantly decreased the plastic limit, liquid limit, and plastic index. The DS alone and combined with FA could effectively control the development of desiccation cracking, reduced significantly the crack area density and average width of cracks of the soil. Consequently, the improvement of alkalinity and soil physical properties by DS amendment significantly increased the yield of alfalfa grown on saline-sodic soil. The remarkable improvement of physical properties of saline-sodic soil contributed to the decrease of SAR and ESP by the Ca2+ in DS replacing the Na + at soil colloid sites. Our results suggested that DS amendments alone or combined with fulvic acid have great potential as saline-alkali soil amendment.


Assuntos
Solo , Aço , Adsorção , Íons , Sódio
7.
Sci Total Environ ; 882: 163557, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080309

RESUMO

Biochar has been used as a sustainable amendment to mitigate environmental risks, improve plant growth and soil properties. This study conducted laboratory column tests to investigate the effects of plant-biochar interactions on shrub growth, hydraulic properties and nutrient contents of recycled concrete aggregates (RCAs). In total, three test conditions, namely, vegetated RCA without biochar (R), with 5 % biochar (R5) and 10 % biochar (R10) were subject to drying. With biochar application, total N, P and K of RCA increased by >100 %, 200 % and 31 %, respectively, while pH reduced to 8.3. With shrub growth, the lowest RCA pH was reduced to 7.8. The leaf area index (LAI) of shrub increased by 51 % due to biochar amendment, while the differences in shoot height were insignificant. The water retention capacity of RCA was enhanced by improving the saturated water content and air-entry value by 27 % and 100 %. The slope of the soil suction-LAI correlation for biochar amend cases was 1.6 times lower than R. This indicates that biochar may limit the increase of matric suction and prevent excessive water loss during drying. However, the differences between R5 and R10 were not significant. Therefore, 5 % biochar amendment is highly suggested as it can substantially improve plant growth and soil hydraulic properties during drying.


Assuntos
Carvão Vegetal , Solo , Carvão Vegetal/química , Solo/química , Água , Desenvolvimento Vegetal
8.
Plants (Basel) ; 12(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050117

RESUMO

Semiarid pasture management strategies can affect soil hydraulic and thermal properties that determine water fluxes and storage, and heat flow in unsaturated soils. We evaluated long-term (>10 years) perennial and annual semiarid pasture system effects on saturated hydraulic conductivity (ks), soil water retention curves (SWRCs), soil water thresholds (i.e., volumetric water content (θv) at saturation, field capacity (FC), and permanent wilting point (PWP); plant available water (PAW)), thermal conductivity (λ), and diffusivity (Dt) within the 0-20 cm soil depth. Forage systems included: Old World bluestem (Bothriochloa bladhii) + legumes (predominantly alfalfa (Medicago sativa)) (OWB-legume), native grass-mix (native), alfalfa + tall wheatgrass (Thinopyrum ponticum) (alfalfa-TW), and annual grass-mix (annual) pastures on a clay loam soil; and native, teff (Eragrostis tef), OWB-grazed, and OWB-ungrazed pastures on a sandy clay loam soil. The perennial OWB-legume and native pastures had increased soil organic matter (SOM) and reduced bulk density (ρb), improving ks, soil water thresholds, λ, and Dt, compared to annual teff and alfalfa-TW (P < 0.05). Soil λ, but not Dt, increased with increasing θv. Grazed pastures decreased ks and water retention compared to other treatments (P < 0.05), yet did not affect λ and Dt (P > 0.05), likely due to higher ρb and contact between particles. Greater λ and Dt at saturation and PWP in perennial versus annual pastures may be attributed to differing SOM and ρb, and some a priori differences in soil texture. Overall, our results suggest that perennial pasture systems are more beneficial than annual systems for soil water storage and heat movement in semiarid regions.

9.
Sci Total Environ ; 856(Pt 2): 159169, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206907

RESUMO

Since the birth of soil science, climate has been recognized as a soil-forming factor, along with parent rock, time, topography, and organisms (from which humans were later kept distinct), often prevalent on the other factors on the very long term. But the climate is in turns affected by soils and their management. This paper describes the interrelationships between climate - and its current change - and soil, focusing on each single factor of its formation. Parent material governs, primarily through the particle size distribution, the capacity of soil to retain water and organic matter, which are two main soil-related drivers of the climate. Time is the only unmanageable soil-forming factor; however, extreme climatic phenomena can upset the soil or even dismantle it, so as to slow down the pathway of pedogenesis or even make it start from scratch. Topography, which drives the pedogenesis mostly controlling rainfall distribution - with repercussions also on the climate - is not anymore a given factor because humans have often become a shaper of it. Indeed humans now play a key role in affecting in a plethora of ways those soil properties that most deal with climate. The abundance and diversity of the other organisms are generally positive to soil quality and as a buffer for climate, but there are troubling evidences that climate change is decreasing soil biodiversity. The corpus of researches on mutual feedback between climate and soil has essentially demonstrated that the best soil management in terms of climate change mitigation must aim at promoting vegetation growth and maximizing soil organic matter content and water retention. Some ongoing virtuous initiatives (e.g., the Great Green Wall of Africa) and farming systems (e.g., the conservation agriculture) should be extended as much as possible worldwide to enable the soil to make the greatest contribution to climate change mitigation.


Assuntos
Agricultura , Solo , Humanos , Mudança Climática , Biodiversidade , Água
10.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365717

RESUMO

Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.

11.
Plant Soil ; 476(1-2): 491-509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992246

RESUMO

Aims: Recent laboratory studies revealed that root hairs may alter soil physical behaviour, influencing soil porosity and water retention on the small scale. However, the results are not consistent, and it is not known if structural changes at the small-scale have impacts at larger scales. Therefore, we evaluated the potential effects of root hairs on soil hydro-mechanical properties in the field using rhizosphere-scale physical measurements. Methods: Changes in soil water retention properties as well as mechanical and hydraulic characteristics were monitored in both silt loam and sandy loam soils. Measurements were taken from plant establishment to harvesting in field trials, comparing three barley genotypes representing distinct phenotypic categories in relation to root hair length. Soil hardness and elasticity were measured using a 3-mm-diameter spherical indenter, while water sorptivity and repellency were measured using a miniaturized infiltrometer with a 0.4-mm tip radius. Results: Over the growing season, plants induced changes in the soil water retention properties, with the plant available water increasing by 21%. Both soil hardness (P = 0.031) and elasticity (P = 0.048) decreased significantly in the presence of root hairs in silt loam soil, by 50% and 36%, respectively. Root hairs also led to significantly smaller water repellency (P = 0.007) in sandy loam soil vegetated with the hairy genotype (-49%) compared to the hairless mutant. Conclusions: Breeding of cash crops for improved soil conditions could be achieved by selecting root phenotypes that ameliorate soil physical properties and therefore contribute to increased soil health. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-022-05530-1.

12.
Sci Total Environ ; 836: 155746, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35525368

RESUMO

The soil physical properties are deteriorating due to changing rainfall patterns and intensities, as well as climate change-induced temperature fluctuations. Pot experiments were carried out to examine the impacts of synthesized soil amendments on soil water retention and plant growth. Soil amendments (biochar, polyacrylamide (PAM), and moringa) were used at different rates (0 (control), 2.1, 4.2, and 8.3 g kg-1) to improve the physical properties of the soil. As a result of soil amendment application, it was found that the mean weight diameter of soil aggregate increased by 188% during the 8.3 g kg-1 treatment, forming stable soil particles. Soil water retention improved by up to 128.9% during the 8.3 g kg-1 treatment, and it was analyzed that it was due to the high surface area of biochar, porosity, and high molecular weight of PAM. Pellet treatment increased all plant growth parameters (height, stem diameter, leaf number, and fresh and dry weight) for both beans and maize. The dry weight of beans (C3 plant) and maize (C4 plant) increased by 92.9 and 146.4%, respectively in an 8.3 g kg-1 pot. The soil physical condition was stabilized by the high carbon content of biochar and the improvement of soil coagulation between PAM and moringa. This had a positive effect on the C4 plant. The findings of this study indicate that if the soil amendments are properly mixed and applied based, they will improve soil stability and plant productivity.


Assuntos
Carvão Vegetal , Solo , Carbono , Carvão Vegetal/farmacologia , Água , Zea mays
13.
Environ Int ; 165: 107293, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609499

RESUMO

Microplastic pollution and changes to soil hydraulic characteristics affect the physical properties and functions of soil; however, knowledge remains limited on how microplastics influence soil hydraulic properties. Nonetheless, it is important to understand these relationships to maintain soil health and ensure sustainable land use, especially in the current "plastic age." This case study explored how different particle sizes (20, 200, and 500 µm) and concentrations (up to 6%) of polypropylene microplastics affect the hydraulic properties of three soil textures (loam, clay, and sand). The results show that addition of microplastic reduced the saturated hydraulic conductivity (Ks) of the three soils by 69.79%, 77.11%, and 95.79%, respectively. These observed adverse effects of microplastics on the infiltration properties of the three studied soils were influenced by particle size, with larger particles having the weakest effect. Furthermore, microplastic addition reduced the water retention capacity of the clay to a greater extent than that of the loam and sand. In the case of clay, the slope of the water characteristic curve (SWRC) increased significantly, whereas the saturated water content (θs) and residual water content (θr) curves decreased significantly. Importantly, the interaction between microplastics and soil alters the soil pore-size distribution and reduces pore availability. Overall, this case study demonstrates the impact of microplastic on the hydraulic properties of different soil textures, which can inform management strategies to minimize the adverse effects of microplastic accumulation on yields where plastics are used in agricultural production.


Assuntos
Microplásticos , Solo , Argila , Plásticos , Areia , Água/análise
14.
Sci Total Environ ; 827: 154296, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35257773

RESUMO

Piping is an erosive process in which subsurface soil particles are removed, causing the formation of underground tunnels. A variety of physical and chemical factors control pipe formation. This study focused on hydrophysical soil properties to propose a mechanism to explain the piping process in soils in a tropical climate in Brazil. We observed two levels of pipes in the field: shallow pipes that form at the transition between E/B horizons (~0.30-0.45 m) and deep pipes that form between different Bt horizons (~1.50 m). We collected disturbed soil samples to determine the soil particle distribution and organic matter content, and undisturbed soil samples were collected to determine the hydrophysical attributes and for soil micromorphometric analysis. We found that the study area was prone to soil collapse and that physical properties controlled the process. The results showed a textural and structural gradient between the E and Bt horizons, where the Bt horizons presented a higher clay content and a well-developed structure (strong sub-angular blocks) compared to the essentially sandy E horizons (single grain). This gradient changed the soil porosity from macroporosity in the E horizon to microporosity in the Bt horizon, particularly represented by the decrease in complex pores. For deeper pipes, soil attribute gradients were found between different Bt horizons. A modification in the structure grade from moderate to weakly moderate, soil water retention curves with different slopes and shapes, and an increase in porosity correlating with soil depth, reflect an increase in larger complex pores. These changes in structure, texture, porosity, and pore type reflect the soil's hydraulic conductivity in the transition of different horizons, which can promote the accumulation and temporary stagnation of water at the top of the Bt horizons, and trigger the piping process when the lateral water flow reaches the critical flow velocity.


Assuntos
Poluentes do Solo , Solo , Argila , Areia , Solo/química , Poluentes do Solo/análise , Água/análise
15.
Glob Chang Biol ; 28(11): 3665-3673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35152535

RESUMO

Soils are important carbon (C) reservoirs and play a critical role in regulating the global C cycle. Soil water potential (SWP) measures the energy with which water is retained in the soil and is one of the most vital factors that constrain the decomposition of soil organic C (SOC). The measurements for soil water retention curve (SWRC), on which the estimation of SWP depends, are usually carried out above -1.5 MPa (i.e., the wilting point for many plants). However, the average moisture threshold at which soil microbial activity ceases is usually below -10 MPa in mineral soils. Beyond the measurement range, the SWP estimation has to be derived from extrapolating the SWRC, which violates the statistical principle, resulting in possibly inaccurate SWP estimations. To date, it is unclear to what extent the extrapolated SWP estimation deviates from the "true value" and how it impacts the modeling of SOC decomposition. This study combined SWRC measurements down to -43.7 MPa, a 72-day soil incubation experiment with four moisture levels, and an SOC decomposition model. In addition to the complete SWRC (SWRCall ), we fitted two more SWRCs by using measurements above -0.5 MPa (SWRC0.5 ) and -1.7 MPa (SWRC1.7 ), respectively, to quantify the deviations of extrapolated SWPs from the complete SWRC. Results showed that extrapolating the SWRC beyond its measurement range significantly underestimated the SWP. Incorporating the extrapolated SWP in the model significantly underestimated the SOC decomposition under relatively dry conditions. With the extrapolated SWP, the model predicted no SOC decomposition in the driest treatment, while the experiment observed a significant CO2 emission. The results emphasize that accurate SWP estimations beyond the wilting point are critically needed to improve the modeling of SOC decomposition.


Assuntos
Solo , Água , Carbono , Plantas
16.
Chemosphere ; 293: 133586, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35031246

RESUMO

The soil hydraulic properties of two low-organic soils (Fluvisol; Regosol) were investigated following their amendment with biochar alone or in combination with manure, compost and co-composted biochar. Self-irrigating boxes containing the soil and amendment combinations were purposed with a battery of soil moisture sensors as well as soil porewater sampling devices. Static sampling determined bulk density, porosity and derived soil water retention curves. The aim of this study was to identify the most advantageous amendment combinations to enhance soil water retention whilst simultaneously avoiding excessive nutrient leaching arising, primarily, from manure application. Biochar significantly decreased bulk density and increased total porosity when compared to compost in the Fluvisol, whereas manure affected the greatest changes in the Regosol. All of the tested amendments adjusted the shape or extent of the soil water retention curves, but biochar addition resulted in the greatest increase (⁓50%) in easily available water content (for plants) in both soils, when compared to the control. Saturated hydraulic conductivity was, however, not changed by any of the amendments which reflects a lack of influence on infiltration. An enhancement in nutrient retention occurred in some of the soil amendment configurations, such as for co-composted biochar at 2% dosage and 5% manure-biochar mixture, as revealed by porewater analysis. In summary, the application of biochar with and without additional compost and manure can enhance soil water retention in low-organic soils whilst maintaining or enhancing nutrient retention. Such finding supports the application of mixed organic amendments to low-organic (and therefore drought-prone) arable soils.


Assuntos
Compostagem , Esterco , Carvão Vegetal , Nutrientes , Solo , Água
17.
Chemosphere ; 291(Pt 1): 133000, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34808200

RESUMO

The United Nations estimates the rate of deforestation over 10 million hectares per year, with additional infested wood available due to drought, bark beetle calamity and other damage vectors. Processing the hard-to-reach infested wood into biochar via mobile pyrolysis units seems to be a good option for fire prevention. However, since most biochar is currently produced mainly from biological waste, there is not enough experience with wood biochar on a large scale. Review of current knowledge, followed by techno-economic assessment reveals that following the chemical composition of the feedstock, wood biochar outperforms other types of biochar in terms of high porosity. Therefore, wood biochar shows excellent results in increasing the amount of plant-available water content in soil and appears to be an excellent tool for recycling nutrients (especially into plant-available forms of phosphorus and nitrogen). The overall positive effects of biochar application change from abiotic to biotic over time because as it decays, many of its physical properties disappear, but it can boost soil microbial communities on which soil fertility depends. As global climate change creates a wide range of factors that damage forest cover, wood biochar consequently represents untapped potential in the field of soil, nutrient, and energy management.


Assuntos
Poluentes do Solo , Madeira , Carvão Vegetal , Solo
18.
Materials (Basel) ; 14(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34300955

RESUMO

Soil organic matter is a key resource base for agriculture. However, its content in cultivated soils is low and often decreases. This study aimed at examining the effects of long-term application of chicken manure (CM) and spent mushroom substrate (SMS) on organic matter accumulation, acidity, and hydraulic properties of soil. Two podzol soils with sandy texture in Podlasie Region (Poland) were enriched with recycled CM (10 Mg ha-1) and SMS (20 Mg ha-1), respectively, every 1-2 years for 20 years. The application of CM and SMS increased soil organic matter content at the depths of 0-20, 20-40, and 40-60 cm, especially at 0-20 cm (by 102-201%). The initial soil pH increased in the CM- and SMS-amended soil by 1.7-2.0 units and 1.0-1.2 units, respectively. Soil bulk density at comparable depths increased and decreased following the addition of CM and SMS, respectively. The addition of CM increased field water capacity (at -100 hPa) in the range from 45.8 to 117.8% depending on the depth within the 0-60 cm layer. In the case of the SMS addition, the value of the parameter was in the range of 42.4-48.5% at two depths within 0-40 cm. Depending on the depth, CM reduced the content of transmission pores (>50 µm) in the range from 46.3 to 82.3% and increased the level of residual pores (<0.5 µm) by 91.0-198.6%. SMS increased the content of residual pores at the successive depths by 121.8, 251.0, and 30.3% and decreased or increased the content of transmission and storage pores. Additionally, it significantly reduced the saturated hydraulic conductivity at two depths within 0-40 cm. The fitted unsaturated hydraulic conductivity at two depths within the 0-40 cm layer increased and decreased in the CM- and SMS-amended soils, respectively. The results provide a novel insight into the application of recycled organic materials to sequester soil organic matter and improve crop productivity by increasing soil water retention capacity and decreasing acidity. This is of particular importance in the case of the studied low-productivity sandy acidic soils that have to be used in agriculture due to limited global land resources and rising food demand.

19.
Materials (Basel) ; 14(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801976

RESUMO

Biochar application has been reported to improve the physical, chemical, and hydrological properties of soil. However, the information about the size fraction composition of the applied biochar as a factor that may have an impact on the properties of soil-biochar mixtures is often underappreciated. Our research shows how sunflower husk biochar (pyrolyzed at 650 °C) can modify the water retention characteristics of arable sandy soil depending on the biochar dose (up to 9.52 wt.%) and particle size (<50 µm, 50-100 µm, 100-250 µm). For comparison, we used soil samples mixed with biochar passed through 2 mm sieve and an unamended reference. The addition of sieved biochar to the soil caused a 30% increase in the available water content (AWC) in comparing to the soil without biochar. However, the most notable improvement (doubling the reference AWC value from 0.078 m3 m-3 to 0.157 m3 m-3) was observed at the lowest doses of biochar (0.95 and 2.24 wt.%) and for the finest size fractions (below 100 µm). The water retention effects on sandy soil are explained as the interplay between the dose, the size of biochar particles, and the porous properties of biochar fractions.

20.
HardwareX ; 10: e00221, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35607677

RESUMO

Tailings dams are large, often self-contained, storage facilities of mine residue. On self-contained tailings dams the tailings material itself is used to raise the containment embankments holding newly deposited residue. To develop the necessary strength, it is essential that material must dry out sufficiently. Despite substantial advancements in the field of instrumentation, these parameters are rarely measured on tailings dams and their evolution over time is poorly understood. Understanding the role of pore water suction and water content evolution over time can benefit from the installation of sensors and data acquisition systems (DAQ) capable of continuously monitoring these parameters. Such monitoring remains difficult and expensive owing to the challenges of measuring negative water pressures and the often-remote locations and harsh operating environments typical of mining operations. This paper describes the development, testing and validation of a low-cost DAQ for the measurement of the unsaturated pore pressure regime in a platinum tailings dam located in the Limpopo province of South Africa. The Tailings Dam DAQ (referred to as TD-DAQ) is designed to measure the negative pore pressure, moisture content and temperature in fine-grained material over extended periods of time. These measurements are stored on the DAQ and transmitted in parallel using new wireless network communications technologies (Sigfox) suited to remote, battery powered applications. The successful deployment of the TD-DAQ presents a real-time, low-cost instrumentation solution to improve the efficiency of condition monitoring of tailings storage facilities, contributing to a reduction in the probability of failure events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...